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BUBBLE INDUCED HEAT TRANSFER IN 
TWO PHASE GAS-LIQUID FLOW 

J. KUBIE* 

Depa~ment of Mechanical Engineering, University of Aston in Bi~~ngham, England 

(Received 29 duly 1974) 

Abstract-The influence of gas bubbles on heat transfer in two phase gas-liquid systems has been 
investigated. Platinum wires have been used as heat-transfer probes and the two phase flow has been 
simulated by generating a single continuous stream of discrete gas bubbles into a stationary liquid. The 
contribution of various modes of heat transfer has been determined. It has been found that transient 
conduction into the liquid is the predominant mode of the bubble induced heat transfer and is responsible 
for about 75 per cent of heat transfer. Convection contributes the remainder. A theoretical model of the 
bubble induced heat transfer based on the surface renewal and penetration theory has been developed. 
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NOMENCLATURE 

wire radius [ml; 
constant defined by equation (26); 
frequency of bubble generation [l/s]; 
(K~ t/a2), instantaneous Fourier number; 
(~Jj?), time-mean Fourier number; 
thermal conductivity [W/mKJ; 
k~k~, dimensio~ess thermal conductivity; 
wire halflength [m] ; 
Qa2/TkL, theoretically calculated Nusselt 
number ; 
Qa’/ATk,, experimentally obtained Nusselt 
number; 
heat generation per unit volume of the wire 

[W/m”] ; 
cylindrical space coordinates; 
(2n f l)n/2, parameter; 
time [s] ; 
space-average wire temperature [K]; 
(T, + T,)/2, film temperature [K]; 
temperature of the liquid [K]; 
first approximation to the liquid 
temperature [K]; 
liquid temperature due to non-zero initial 
wire temperature [K]; 
initial wire temperature [K]; 
initiai space-average wire temperature [K]; 
temperature of the wire [K]; 
first approximation to the wire temperature 

WI; 

*Present address: Central Electricity Research Labora- 
tories, Leatherhead, Surrey, England. 

T w21 wire temperature due to non-zero initial wire 
temperature [K]; 

T x, experimentally obtained average wire 
temperature [K]; 

T 
A?. 

pool temperature [K]; 
TX- T,, temperature difference [K]; 

Y. m/L, parameter. 

Greek symbols 

k’, thermal diffusivity [m2/s]; 
k’0, tiJxW, dimensionless thermal diffusivity; 
7, l/J periodic time [s]; 

Tb, bubble residence time on the wire surface [s]; 

Qt* function defined by equation (24); 

li/. function defined by equation (25). 

Subscripts 

1, first approximation to; 
2, due to the non-zero initial wire temperature; 
i instantaneo~; 

L‘, referring to the liquid; 
M, time-mean; 

W, referring to the wire. 

1. INTRODUCTION 

IT HAS been observed that two phase gas-liquid flow 
is usually associated with an intense increase in trans- 
port rates as compared with a single phase flow under 
similar flow rate conditions. Heat transfer is one of the 
transport processes in which this phenomenon is 
observed. 
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Although there is some evidence that under certain 

conditions the latent heat transport is not negligible 

[l], most authors agree that the enhancement of heat 
transfer is hydrodynamic in nature and that latent heat 

transport is unimportant as a heat-transfer mechanism 

[24]. This is demonstrated by the fact that heat- 
transfer rates in nucleate boiling and in two phase flow 

without the change of phase (i.e. without evaporation) 
are of the same order ofmagnitudes. Hence a theoretical 
investigation of heat transfer in two phase flow systems 
in which there is no evaporation, and which is simpler, 

may aid in understanding of heat-transfer mechanisms 
in both cases [S]. 

The object of the reported work is to investigate the 
precise nature of the heat-transfer mechanism in two 
phase gassliquid bubbling flow without evaporation 

and to determine the contribution of various modes of 
heat transfer. 

Even gas-liquid flow which is characterized by a 
continuous liquid phase and by a discrete phase of 
individual gas bubbles is an extremely complicated 
system for a theoretical investigation [6]. Thus it was 
decided to simulate it by generating a single continuous 
stream of discrete gas bubbles into a stationary liquid. 
The bubble volumes and the frequency of their genera- 
tion were known. (The mixture of liquid and gas 
bubbles within the containing vessel will be referred to 
as the “pool” throughout this paper.) 

To compare various mechanisms of heat transfer and 
their contribution, a heat-transfer probe which can be 
used to discriminate between conductive and convec- 
tive modes of heat transfer has been developed [7]. 

A theoretical model based on the surface renewal and 
penetration theory and transient conduction as the only 
mechanism of heat transfer has been developed and 
has been found to predict the bubble induced heat 
transfer to a good degree of accuracy. 

2. APPARATUS, INSTRUMENTATION AND 
EXPERIMENTAL TECHNlQUE 

2.1 Experimental apparatus 
The line diagram of the experimental equipment is 

shownin Fig. 1. The gas is supplied through a system of 

valves (V’) and rotameters (R), which are used to 
measure the gas flow rate. The liquid is contained in 
a glass vessel (G k’), which is separated from the plenum 
chamber (CC’) by a “perspex” plate, in the middle of 

which is situated the bubble generator (BG). The bubble 
generator consists of a thin stainless steel tube with a 
valve (GV) at one end. Three different bubble generator 
diameters were used-03 mm, 1.6 mm and 2.8 mm. The 
maximum frequency of bubble generation was obtained 
with the smallest diameter generator and was of the 

order of 40 bubbles per second. 

The heat-transfer probe, described below, is placed 

above the centre of the generating orifice. Using addi- 
tional glass sections (AS) it is possible to adjust the 
distance between the heat-transfer probe and the 

generating orifice. 

2.2 Heat-transfer probe and its instrumentation 
The development and the design of the probe are 

described in more detail elsewhere [7]. The schematic 
diagram sf the probe is shown in Fig. 2. A thin 
platinum wire (PI%‘) (serving as the heat-transfer probe) 
is stretched between two flat copper supports (CS), the 
wire being electrically heated and the copper supports 
serving as electrical leads of negligible resistance. The 

length of the wire is equal (or about equal) to the 
diameter of generated gas bubbles and is set at 4.45 mm. 

The platinum wire has three basic functions: (i) it 
serves as a heat-transfer probe; (ii) using the principles 
of anemometry it is employed to measure its own 
instantaneous temperature; and (iii) it is used to 
measure the frequency of bubble generation. 
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FIG. 2. Schematic diagram of the heat- 
transfer probe and a gas bubble. 

To obtain experimental data from the probe, the wire 
has been incorporated into one branch of a standard 
Wheatstone bridge-Fig. 1. The current through the 

bridge is supplied by a 12 V battery and regulated by 
the variable resistor Rl. The digital voltmeter (OF) is 
used to measure the voltage across the wire and the 

UV-recorder (Uv) to record voltage fluctuations across 
the bridge. The bridge is balanced by the variable 

resistor R2. 

2.3 Experimental technique 

Experimental technique is described only briefly; 
more detailed description being given in [7]. 

The frequency of bubble generation and their size 

depend on the diameter of the generating orifice, the gas 
flow rate through this orifice and the properties of the 
liquid phase. The adjustment of the frequency was 
effected by adjusting the opening of the valve (GF) and 
by adjusting the gas back pressure. Volumes of the 

generated bubbles were determined from the known gas 
flow rate and the known frequency of bubble genera- 
tion. Since the bubbles were small it was assumed that 
they were of a spherical shape and their diameters were 

calculated from their volumes. 
The distance between the wire and the generating 

orifice was chosen as 10mm. When this distance was 
too small, the currents in the liquid caused by bubbles 
growing at the orifice (local source effect in the liquid) 
tended to distort the temperature field near the wire. 
When this distance was too large, the rising bubbles 

sometimes by-passed the wire because of the oscillatory 

character of the horizontal component of their velocity. 

It was found experimentally that when this distance 
was about 10mm the distortions of the temperature 

field were very small and that the bubbles then always 
hit the wire and were nearly always bisected by it 
instead of rolling over the wire surface or completely 

missing it. 
The wire was calibrated in liquid at known tempera- 

tures and the relationship (the calibration curve) 

between the wire temperature and the resistance of R2 

was obtained. 
To investigate the mechanism of the bubble induced 

heat transfer the procedure was as follows. For a given 
frequency of bubble generation, the time-mean average 

wire temperature was set approximately at the required 
level by setting the resistor R2 at a value corresponding 
to this temperature and by adjusting the current 
through the bridge in such a way that the bridge was 
approximately in balance. Once the bridge was roughly 
balanced, the UV-recorder traces were obtained. Using 
calculated calibration constants for the UV-recorder 

traces [7], the variations of the instantaneous wire 
temperature with time were obtained. The exact time- 
mean average wire temperature was then calculated 

over the whole cycle (from point 0 to point 0’-Fig. 12) 
by graphical integration. 

The frequency of bubble generation was then deter- 
mined from the frequency of the periodic fluctuations 

of the instantaneous wire temperature. 
The rate of heat generation per unit volume of the 

wire, Q, was calculated from the voltage across the 

wire and the average wire resistance corresponding to 
the time-mean average wire temperature. (The change 

of the average wire resistance and the voltage with time 

was neglected. The error introduced by these two 
approximations was small and was estimated to be 

below 3 per cent.) 
The experimental instantaneous Nusselt number, 

(Nu,)~, corresponding to a particular value of the 

instantaneous Fourier number, was then calculated 
from the known values of the rate of heat generation 
per unit volume of the wire, Q, and the instantaneous 
average temperature difference AT = (Tx)i - T,. 
Similarly the experimental time-mean Nusselt number 
(calculated over the whole cycle) was obtained for each 
particular value of the time-mean Fourier number. 

3. EXPERIMENTAL RESULTS 

Three different liquids were used for the experimental 
investigation of the phenomenon. Their properties 
calculated at the film temperature 7” = 25°C are shown 
in Table 1. Air was used as the gas phase. Probe wires 
offour different diameters were used ranging from 41.15 
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Table 1. Liquids used for the experimental investigation 
-. 

Thermal Specific 
conductivity heat Density Viscosity 

Liquid IW/mKI (J:kgK) (kg.‘m3) (kgms) 

0,615 4180 1000 0~000895 
0,140 2130 700 0~00042 

0.420 3390 11’5 0.0057 
_~ ____ ___. __- 

Water 
n-heptane 
50 “” aqueous solution 

of glycerol 
-___ 

to 305 pm. The liquid temperature was kept at 20°C and 
unless stated otherwise, the time-mean temperature 
difference was set at about 10°C (AT, = 10°C). 

The variation of the instantaneous average wire 
temperature with time is shown in Fig. 3. This figure 
was obtained by photographing some of the UV- 
recorder traces. The ripples on these traces are due to 
noise. These temperature variations were obtained 

Time 

FIG. 3. Variation of the instantaneous wire temperature with 
time (water, a = 20.6 pm, A = 108, T, = 20°C). From top to 

bottom:f = 0.8, 1.2. 2.3, 3.8 and 10.41/s. 

using a platinum wire 41.15 pm diameter in water. The 
choice of the liquid in the pool had little effect on the 
general character of the temperature curves. but the 
influence of the wire diameter was profound. The 
greatest sensitivity to bubble frequency, and hence the 
clearest outputs, was obtained with the smallest 
diameter wire, since its heat capacity was small and the 
distortions due to it were minimized. 

Some experimentally obtained instantaneous Nusselt 
numbers are plotted against the instantaneous Fourier 
numbers in Figs. 4 and 5. The discrete experimental 
points were obtained from the rising parts of the 
temperature curves (point 1 to point 2-Fig. 12). For 
each cycle the rising part of the temperature curve was 
divided into six equal parts and hence seven experi- 
mental points were obtained from each cycle; since 
more cycles were used there is some inevitable scatter 
in these figures. 

Some of the experimental time-mean Nusselt 
numbers are plotted against the time-mean Fourier 
numbers in Figs. 6-10. 

Experiments were conducted to investigate the 
influence of elevated temperatures on the mechanism 
of the bubble induced heat transfer. All experimental 
conditions except the film temperature, 7”. remained 
the same as above. Water was used as the liquid 
phase. Experimental results are shown in Fig. 11. 

4. THEORETICAL ANALYSIS 

4.1 Assumptions used in the theoretical model 
A theoretical model of the bubble induced heat 

transfer in the present system, based on the surface 
renewal and penetration theory [8,9], has been 
developed. The model is based on the following 
assumptions: 

(i) The heat-transfer process is periodic with period 
z = l/f, wheref is the frequency of bubble generation. 

(ii) The presence of gas bubbles in the pool is 
responsible for the continuous mixing of the liquid in 
the pool. Because of the continual mixing in the bulk 
of the pool, the temperature of the liquid throughout 
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FIG. 4. Instantaneous heat transfer from a 41.15 pm dia wire into water 

(A = 108, TF = 25°C). 
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FIG. 5. Instantaneous heat transfer from a 125 pm dia wire 
into water (A = 35.56, TF = 25°C). 

FIG. 6. Time-mean heat transfer from a 305pm dia wire 
into water (A = 14.6, TF = 25°C). 

the bulk of the pool remains constant. When a bubble 
passes the surface of the heat-transfer probe, the “old” 
liquid, which has been heated by the wire prior to the 
bubble arrival is replaced by “fresh” liquid from the 
bulk of the pool, which was brought by the passing 
bubble in its wake. While this liquid is in contact with 
the surface ofthe heat-transfer probe, heat is transferred 
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to it by a non-steady heat-transfer process. F‘or a 
particular case, the amount of heat transferred to it 
depends on the duration of the contact time between 
the surface of the heat-transfer probe and the liquid. 
After a certain time, known as the “residence time” of 
the liquid on the surface of the heat-transfer probe, 
the next bubble arrives and the now “old” liquid is 
again replaced by the fresh liquid from the bulk of the 
pool. In this way the liquid on the surface of the heat- 
transfer probe is being replaced periodically at 
frequency f. 

(iii) The diameter of passing bubbles is approxi- 
mately equal to the length of the probe. Hence it is 
assumed that the liquid is being effectively replaced 
over the whole surface area of the heat-transfer probe. 
It is further assumed that the residence time of gas 
bubbles on the surface of the heat-transfer probe is 
negligible compared with the residence time of the 
liquid there. This implies that only liquid is in contact 
with the surface of the heat-transfer probe and hence 
that only liquid is responsible for the heat transfer 
from the probe to the pool. 

(iv) It is further assumed that all liquid and wire 
material properties remain constant, that dissipation of 
mechanical energy can be neglected and that only 
resistance heating of the wire is considered. 

In order to define the model completely one must 
know the boundary conditions of the system. These 
generally depend on the heat-transfer probe used. As a 
result of the construction of the present probe the 
following assumptions about its behaviour are made: 

(i) Since the electrical and thermal resistances of the 
copper supports (Fig. 2) are small compared with those 
of the wire material and their surface area is large 
compared with that of the wire, it is assumed that 
they remain at the pool temperature, T,, throughout 
the process. 

HMT Vol. 18. No.4~E 
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FIG. 7. Time-mean heat transfer from a 125 pm dia wire into water 
(A = 35.6, ‘& = 25°C). 
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FIG. 8. Time-mean heat transfer from a 41.15 pm dia wire into water 
(A =108, T,= 25°C). 

I 

- 02 

r 0a 

I 1111 I I Illll/l I I I 0’ 
o-5 1 2 5 IO 20 50 

Fo, 

FIG. 9. Time-mean heat transfer from a 125 pm dia wire into n-heptane 
(A = 35.6, TF = 25°C). 
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FIG. 10. Time-mean heat transfer from a 125 pm dia wire into SO/.50 glycerol solution 
(A = 35.6, Tr = 25°C). 
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FIG. 11. Time-mean heat transfer from a 125 brn dia wire into water at 
elevated temperatures (A = 356). 

(ii) Finally it is assumed that the radial extent of the 
copper supports and of the liquid between them is 
infinite, compared with the very small radius of the 
wire. Hence the system can be regarded as a~s~rnet~c 
about the z-axis. 

In order to make the mathematical description of 
the system simpler, the pool temperature is set at the 
reference zero (T, = 0). Only the slab of the liquid 
between the two copper supports is considered and it 
is assumed that each heating period starts at the 
moment when the liquid on the wire surface has just 
been renewed. Using the above assumptions the full 
energy description of the process can be obtained. The 
energy equations together with momentum and con- 
tinuity equations provide the complete description of 
the system. Thus, at least in principle, the solution could 
be obtained. 

4.2 Non-steady heat-transfer mechanism 
The system of differential equations describing the 

bubble induced heat transfer in the present system [7] 
is very complex and to solve it, even nume~~lly, would 
be extremely di%cult. So an alternative method of 
attack must be developed. The method is based on 
separating conductive and convective modes of heat 
transfer. 

While the wire is in contact with the surrounding 
liquid, the heat is transferred from the wire to the 
liquid by a non-steady heat-transfer process. In the 
present system this non-steady heat-transfer mechanism 
is defined generally as consisting of a conductive and a 
convective component. The convective component of 
the heat-transfer mechanism can be calculated only 
after the velocity field in the wire vicinity has been 
deter~n~. The calculation of the vetocity field in the 
wire vicinity causes the main difficulties in finding a full 



analytical solution. As mentioned previously. the 
present probe can be used to discriminate between 
conductive and convective components of heat transfer 
[7]. This is due to the fact that non-steady heat 

transfer from the probe to the surrounding liquid, when 

conduction is the only mode of heat transfer, can be 

calculated theoretically to a high degree of accuracy. 

Hence the effect of convection can be determined by 
comparing the experimentally observed heat transfer 

from the probe under mixed mode conditions (conduc- 
tion and convection) with that one determined 

theoretically, in which conduction is the only mode of 
heat transfer. Thus in the subsequent analysis the effect 

of additional convection is neglected and it is assumed 
that conduction is the only mode of the bubble induced 
heat transfer. 

The neglect of the convective mode of heat transfer 
implies the following simplifying assumption: Gas 
bubbles cause the renewal of the liquid on the wire 
surface only. and the liquid remains stationary once 

in contact with the surface of the probe and there 
are no convection currents within the liquid. This is 

clearly the most controversial assumption and its 

validity will be discussed later. If the experimental heat- 
transfer rates are higher than the theoretical ones, 
which assume that conduction is the only mechanism 
of the bubble induced heat transfer, the assumption 
does not hold. In that case convection provides an 
important contribution to the bubble induced heat 

transfer and its importance can be assessed from the 
difference between experimental and theoretical results 

(the greater the relative difference, the greater the 

contribution of convection). 

4.3 I@lence qf the irlitial wire temperature 

At the start of each heating cycle, when the liquid 
has just been replaced on the surface of the heat-transfer 
probe, the initial temperature of the liquid in the wire 

vicinity is the same as the temperature of the liquid 
in the bulk of the pool, T,. The initial temperature of 
the wire is different. Because the probe wire has finite 
heat capacity, finite times are required for finite changes 
of the wire temperature. Hence the initial wire tempera- 
ture is different from the initial temperature of the 
liquid. The initial wire temperature depends on many 
factors, such as the bubble residence time on the wire 
surface, thermophysical properties of the bubble gas, 

etc. To discuss the influence of the initial wire 
temperature, To, the energy equations are presented in 
the following way [7] : 

Let 

TL = TM + 7-i.z (1) 

Tw = T,, +Tw2 (2) 

such that 

subject to 

t = 0, /-?I < L TL1 = Twl = 0 

t > 0. /z_I = L T,, = TWX = 0 

t 2 0. I’ = a, IzI G L T,, = T,, 

and 

t 2 0, r > a, /zI < L 

C.2 
__ = KJ. 

at 

t > 0. r < a, IzI < L 

ZTW2 ?‘TW2 1 ?T,, S2TW2 

F=+ 
-----f_--- ___ 

?r2 r Fr + sz2 

subject to 

t = 0. (~1 < L TL2 = 0 

T,, = T,(r, Z) 

t > 0, JzI = L TL2 = Tw2 = 0 

0 

t > 0, r = a, 1.~1 < L TL2 = TW2 

(7Tw2 -k$ = -k,,,-, 

?r 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

The solution of equations (lo)-(17) provides only a 

transient non-trivial temperature field, due to the non- 
zero initial wire temperature. The importance of this 
solution can be summarized by the following statement: 
The greater the instantaneous Fourier number, Fo, the 

smaller the influence of the non-zero initial wire 
temperature on the total temperature field in and 
around the wire [7]. Hence the solution of equations 
(3)-(g) will provide the first approximation to the 
temperature field in and around the wire when conduc- 
tion is the only mechanism of heat transfer between the 
wire and the liquid, and its accuracy will increase 
with increasing values of the instantaneous Fourier 
number. 
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This approximation implies the assumption that at 

the beginning of each heating cycle the temperature 
of the wire drops instantaneously to the initial tempera- 

ture of the liquid, T,. which is set at the reference zero 
(Section 4.1). 
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where 

4 = .xY,(x)+CY,(x) (24) 

$ = XJi(X) + C&(x) (25) 

c = &[“i-(x’+?.l)ti~] (26) 

4.4 First approximation to the wire temperature 
Equations (3)-(9) provide the first approximation 

to the temperature field in and around the wire when 
conduction is the only mode of heat transfer between 
the probe and the surrounding liquid. They can be 
solved numerically, but they are still too complex for 
analytical treatment. Hence one additional simplifying 

assumption is considered. 

Since the wire is very thin and is made of material 

whose thermal conductivity is very much greater than 

that of the surrounding liquid, the radial distribution 
of temperature within the wire will be nearly uniform. 

The wire then may be for many purposes regarded as a 
finite rod with heat generated within it and being 

dissipated (a) from the outer surface by conduction into 
the surrounding liquid and (b) from its ends by conduc- 

tion to the copper supports [lo]. The differential 
equation (4) and boundary conditions (8) and (9) then 

simplify into one boundary condition (22) (Appendix 1). 
Hence the original system of equations (3)-(9) can 

be approximated by the following equations : 

t > 0, r > a, IzI < L 

subject to 

t = 0. r > a, IzI < L TL1 = 0 (19) 

t > 0, r > a. IzI = L TL1 = 0 (20) 

t > 0, r > a, z = 0 !?I!5 = 0 
dz 

(21) 

Equation (18) subject to equations (19)-(22). was first 
solved by Jaeger [lo], who obtained the solution for 
the maximum instantaneous wire temperature only. 
Solution, suitable for the following analysis, method of 
which is shown briefly in Appendix 2, was obtained 

by the present author as 

t b 0, r 2 a, IzI < L 

and where Bessel functions have their usual meanings. 
Temperature of the wire is obtained from equation 

(23) with r = a (Appendix 1). 
In order to compare theoretical and experimental 

results with as low error as possible, it is desirable to 
express the theoretical solution in terms of directly 

measurable parameters. These will be obtained by con- 

sidering the experimental application of the probe. It 
is not practicable to detect the local wire temperature; 

in practice the wire temperature is determined from the 
electrical resistance of its entire length. If. as in the 
present case, the wire is used in a similar way to a 

constant current anemometer. a certain space-average 

wire temperature will be measured. This space-average 
wire temperature is the directly measurable parameter 

upon which the theoretical solution should be based. It 
is therefore necessary to find the relationship between 
the local wire temperature distribution, T,, at any time t 
and the space-average wire temperature, T, at the same 
instant. Hereafter the term “average wire temperature” 
will be used to denote the space-average wire tempera- 
ture. 

Because the wire temperature Ructuations are small. 

the relationship between the wire temperature and its 

resistance can be approximated by a linear function. 
The average wire temperature is then defined as [7] 

T=L 
s 

L 

2L -L 
TW dz. (27) 

The instantaneous average wire temperature, ( T,)i, is 

obtained by substituting r = a into equation (23) to 
obtain the local wire temperature and then by 

substituting the local wire temperature T,, into 
equation (27) to calculate (T,); as 

x ds 

x (X2+)j2)($=+$2)’ 
(28) 

T,,kL m (-1) 
p= 
a2Q 

c- n=O s 
~0s: 

Equation (28) gives the instantaneous average wire 
temperature. From the point of view of the overall 
time-mean heat transfer. the time-mean average wire 
temperature if of far greater importance. The time- 
mean average wire temperature can be calculated only 
if the residence time distribution function of the 
elements of the liquid on the surface of the heat-transfer 

x ++-Jo($+J 

(x2+y=)(@+$2) xdx (23) probe is known. It is assumed (Section 4.2) that the 
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liquid on the wire surface is stationary and this implies Equations (lo)-( 17) can now be solved numerically 
that the required age distribution function is the [7] and the instantaneous and the time--mean average 
Higbie’s uniform age distribution function [g] with the wire temperatures due to the initial wire temperature. 
mean residence time of the liquid on the wire surface rO, can be calculated. Hence (Tz)? and CT,), can be 
given by the frequency of bubble generation. Hence obtained. [Equation (27) is used to calculate the average 
the first approximation to the time-mean average wire wire temperature and equation (29) the time-mean 
temperature is defined by average wire temperature.] 

(29) 

Substituting equation (28) into equation (29) the first 
approximation to the time-mean average wire tempera- 
ture (Tr), is then calculated as 

4.6 ~o}~dzictj~}~ ~~l~deio~t~le bzl~b~e injured Eaeat trffn~~r 

Full solution for the temperature field in and around 
the wire is defined by equations f 1 f and (2). Similarfy the 
instantaneous and the time-mean average wire 
temperatures can be defined as 

T = (Tr)i+(TZ)i (35) 

L = (T,),+(WZn (36) 

respectively. Equations (35) and (36) can be rewritten 
in dimensionless form as 

x d?c x -.-~. 
(X2+C,2)(~2+~2) 

(30) 

4.5 Temperature$etd due to initial wire temperature 

The temperature field due to the influence of the 
initial wire temperature is given by the solution of 
equations (lo)-( 17). It is again assumed that the radial 
distribution of the wire temperature is nearly uniform 
and hence the initial wire temperature can be rewritten 
as 

T,(r, z) = T&&(z) 

wherefi(z) is normalized such that 

(31) 

(33) 

and hence TO, is the initial average wire temperature. 
In order to solve equations (lo)-(17~ function &(z) 

and temperature TOA must be known. 
It has been shown experimentally (Fig. 3) that the 

initial average wire temperature is approximately equal 
to the experimentally determined time-mean average 
wire temperature, (7’&. Because the theoretical 
analysis developed in this work is based on the 
assumption that the pool temperature, T,,, is zero, the 
initial average wire temperature which must be used 
here is given by the difference between the experi- 
mentally determined time-mean average wire tempera- 
ture, (TX),, and the pool temperature, TX,. 

To.4 = (T,)Zr- TX.. (33) 

It is difficult to determine the initial wire temperature 
distribution and hence the simplest form of the function 
&(z), satisfying all boundary conditions, is assumed. 
Thus a parabohc function is chosen, so that 

,fi(z) = t 5( I- 2). (34) 

TikL _ (T,)ik, (T2)i [(TX),- Tx]kL 

Qa" Qu .--Z- + r -- (37) 
0.4 Qa2 

It can be shown that Qa/Z(Tr)i and Qa/2(Tl)m can 
be regarded as first approximations to the instan- 
taneous and the time-mean heat-transfer coefficients 
for the conduction model of the bubble induced heat 
transfer in the present system respectively. Simiiarly 
Qa2~(~~~i~~ and Qu~~(~~)~~~ can be regarded as first 
approximations to the instantaneous and the time” 
mean Nusselt numbers respectively. Furthermore, for 
the above value of the initial average wire tempera- 
ture. ‘fos4 [equation (33)]. the group Qu2&(Tx),- ‘&,I kL 
is equal to the experimentally determined time-mean 
Nusselt number, (Nz~,~),,,. 

Hence 

(N!Ar)i = (+j$” (39) 
t I 1. 

Qa2 (Ah&= ____- 
(T),b. 

(40) 

where (Nul)i and (Nu,), are first approximations to 
the instantaneous and the time-mean Nusselt numbers 
respectively. 

Similarly 

(41) 

(42) 
where NUi and Nu, are full soiutions for the instan- 
taneous and the time-mean Nusselt numbers respec- 
tively. 
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If then the properties of the liquid and of the wire 
material and the wire dimensions are known, the 
Nusselt numbers can be calculated as functions of the 
Fourier numbers. 

The theoretical predictions are compared with the 
experimental data in Figs. 4-l 1. 

5. DEXUSSON 

5.1 ~~stuntu~eozis average wire temperature 
A typical instantaneous wire temperature vs time 

diagram is shown in Fig. 12. No simultaneous photo- 
graphs of rising gas bubbles were taken. However, a 
simple explanation of this temperature-time profile can 
be made. 

drop in the heat-transfer rate and hence in turn a 
sudden rise of the wire temperature. This corresponds 
to the temperature rise of the wire from point 3 to 
point 0’. When the bubble leaves the wire, cold poet 
liquid in its wake hits the wire and the whole process 
is repeated again. 

The residence time of gas bubbles on the wire, Tb, 

corresponds to the time interval necessary for a bubble 
to pass the wire and is of the order of lO-2Oms. 
This agrees we11 with the experimental observations 
of bubble sizes and velocities made during the present 
investigation. The bubble diameter was about 45 mm 
and the corresponding bubble velocity about 300 mm/s, 
implying a residence time of the bubble on the wire 
surface of about 15 ms. 

FIG. 12. A typical diagram of the instantaneous average wire tem- 
perature as a function of time. 

Referring to Fig. 12, assume that the periodic process 
starts at point 0, when the wake of a passing gas 
bubble brings fresh liquid in contact with the wire. At 
that moment two heat-transfer processes are competing. 
The first is the heating of the wire by the heat 
generated within it (which is present throughout the 
process); the second is the simultaneous rapid cooling 
of the wire by the fresh cool liquid. From point 0 to 
point 1 the cooling rate is greater than the heating 
rate, at point 1 they are equal, and from point 1 to 
point 2 the transient heating of the wire and of the 
liquid surrounding it is the only heat-transfer process 
present. The transient heating of the wire and of the 
surrounding liquid is undisturbed until the next bubble 
approaches the wire. Then the nose of this bubble 
forces the “old”’ warm liquid away and replaces it 
partially with the fresh liquid, causing some cooling of 
the wire. This corresponds to the temperature drop 
from point 2 to point 3. At point 3 the gas bubble 
itselfcomes into contact with the wire and at least some 
of the liquid in the wire vicinity is replaced by the gas 
contained inside the gas bubble. This causes a marked 

Figure 3 demonstrates that the initial average wire 
temperature, Y.& (point 0, Fig. 12), is in most cakes 
approximately equal to the time-mean average wire 
temperature. This value of the initial average tem- 
perature was used to determine temperatures (7”‘)i and 
(T,),-Section 4.5. 

5.2 Surface renewal and other assumptions 
The rate of heating of the wire during the time when 

a bubble is present on it (~orres~n~ng to the time 
interval from point 3 to point 0’. Fig. 12) was investi- 
gated. The observed rate of temperature rise of the 
wire was far below the value expected for heating of a 
bare platinum wire in air. even when the time constants 
of the wire, bridge and recording instruments were 
allowed for. From this it was deduced that there was a 
liquid film attached to the wire during the bubble 
residence on the wire surface. 

Next it was investigated if this liquid film remained 
attached to the wire pe~anently. The question about 
the permanent attachment of the liquid film is closely 
related to the question about the effectiveness of the 



surface renewal of the liquid by the action of passing 
bubbles. This was investigated as follows: 

Assume that when the wake of a passing bubble hits 
the wire (point 0. Fig. 12) the liquid on the surface or 
the wire is completely replaced and that conduction 
is the only mechanism of the subsequent heat transfer. 
The instantaneous average wire temperature is then 

given by equation (35). 
Temperature 7; goes through a minimum. the value 

of which is calculated theoretically from equation (35). 
This minimum has also been observed experimentally 
(point 1, Fig. 12 and Fig. 3). The experimental values 

of the minimum have been found on average to be 
about 25 per cent lower than the theoretical ones 
calculated from equation (35) on the basis of the 
complete surface renewal of the liquid and conduction 

as the only mechanism of heat transfer. It is shown in 
Section 5.3 that when Fourier numbers are sufficiently 
large [i.e. when temperature (T,), is negligible compared 

with temperature (T,), which can be determined very 
accurately theoretically], convection is responsible for 

about 25 per cent of the bubble induced heat transfer. 

This implies that for identical conditions, experimental 
temperatures are about 25 per cent lower than the 
theoretical ones, which are calculated on the assump- 

tion that conduction is the only mechanism of the 
bubbleinduced heat transfer. It is reasonable to assume 
that the same situation occurs for extremely small 
Fourier numbers. which must be considered when 

investigating the effectiveness of the surface renewal 
of the liquid. This then necessarily means that the 
renewal of the liquid on the wire surface is complete 
and that the liquid does not remain attached to the 

wire permanently. Had this been the case, the experi- 
mentally observed minimum wire temperatures would 
have been nearer to, or even above, the theoretically 
calculated minimum wire temperatures. 

Hence the liquid film is attached to the wire only 
during the presence of gas bubbles on it when. perhaps. 

the momentum of gas bubbles is not sufficiently large 
to force all liquid away from the wire vicinity. When 
the bubble passes the wire the large momentum of the 
bubble wake causes a complete liquid replacement in 
the wire vicinity. 

For the calculation of the time-mean heat-transfer 
coefficients. it was assumed that the residence time of 
gas bubbles on the wire surface, TV. was negligible and 
that only bubble wakes were responsible for the 
surface renewal of the liquid. Clearly this is not the 
case, because the bubble residence time. sh. is tinite 
and the bubble nose is responsible for a partial liquid 
renewal on the wire surface (Figs. 3 and 12). The 
influence of these two effects will be more important 
for higher frequencies of bubble generation when the 
ratio T& is relatively large. Because of the influence 

of two opposing effects during the liquid renewal. 
which are most prominent for higher frequencies of 
bubble generation (Fig. 3). the error due to the above 
mentioned discrepancies will be attenuated. The two 
opposing effects are the partial drop of the wire 

temperature during the approach of the bubble nose 
(interval 2 to 3, Fig. 12) and the wire temperature 
rise during the presence on the wire of the bubble 
itself (interval 3 to 0’, Fig. 12). This is schematically 

shown in Fig. 12. The broken line represents the case 
ofan ideal liquid renewal and the two above mentioned 
effects cancel, at least partially. each other out. 

5.3 Bubble induced hut tran.+r 

It has been shown in the preceding Section that 

bubble induced liquid replacement on the surface of 
the probe wire is a 100 per cent effective mechanism 
ofmass transport there. Hence the theoretically derived 

solution for the instantaneous heat transfer from the 
wire to the surrounding liquid. based on transient 
conduction as the only mechanism of heat transfer. 

should result in heat-transfer coefficients which arc 
lower than those obtained experimentally. This must 

be the case because the additional convection in any 

form, which increases the experimentally obtained heat- 
transfer coefficients. is neglected in the theoretical 
analysis. Because of the liquid moving with the bubble 
wake. the effect of forced convection is most prominent 
for short liquid residence times and hence for small 

values of the instantaneous Fourier number. Fo. On the 
other hand, the effect of natural convection becomes 
important for large liquid residence times (large values 

of the instantaneous Fourier number). For intermediate 
values of liquid residence time. both types of convection 
are important. 

Figures 4 and 5 demonstrate that the above require- 
ment is well satisfied. Experimental results are about 25 
per cent higher than the theoretical predictions which 
are based on transient conduction as the only 
mechanism of the bubble induced heat transfer. This 
confirm> the assumption that transient conduction is 
the most important mechanism of the bubble induced 
heat transfer. Transient conduction is responsible for 
about 75 per cent of the total heat transfer and liquid 
convection contributes the remainder. 

Situations similar to the case of the instantaneous 
bubble induced heat transfer can be observed on 
graphs of the time--mean bubble induced heat transfer 

(Figs. 6-10)Pall experimental results lie 20-30 per cent 
above the theoretical predictions. The experimental 
results of the time-mean heat transfer. coupled with 
theexperimental observation that transient conduction 
is responsible for 75 per cent of heat transfer also in the 
case of the instantaneous heat transfer, confirm in- 
directly the assumption that the bubble wakes are 
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primarily responsible for the renewal of the liquid on 

the wire surface and, furthermore, that the effect of the 
finite residence time of the bubbles on the wire and 

the effect of the bubble “noses” cancel each other out. 
Some results have been obtained from experiments 

conducted at higher film temperatures (Fig. 11). These 
results show a slight increase in heat-transfer coeffi- 

cients for the case of higher film temperatures which 
is probably due to the increased contribution of liquid 
convection. These results do not differ appreciably 
from results obtained from experiments conducted 

under standard conditions (Tr = 25’C) and confirm 

once more that transient conduction is the most 
important mechanism of the bubble induced heat 

transfer. 
The theoretical solution to the present problem 

shows (and experimental results confirm) that the fre- 

quency of bubble generation has profound effect on the 
time-mean bubble induced heat transfer. The time- 

mean heat-transfer coefficient increases with the fre- 
quency of bubble generation. Hence in order to 
maximize the time-mean bubble induced heat transfer 

the frequency of bubble generation should be as high as 

possible. 

6. CONCLUSIONS 

Bubble induced heat transfer in simplified gas-liquid 
systems with controlled frequency of bubble generation, 
using a special heat-transfer probe, has been investi- 
gated. It has been found that: 

(i) Surface renewal and penetration theory can be 
used to describe the bubble induced heat transfer in 
the present system to a good degree of accuracy. 

(ii) Bubble wakes are primarily responsible for the 
surface renewal of the liquid. 

(iii) Transient conduction into the liquid phase is the 
most important mechanism of the bubble induced 
heat transfer, being responsible for about 75 per cent 
of the total heat transfer. Convection contributes the 
remainder. 

(iv) To maximize the time-mean bubble induced 

heat transfer, the frequency of bubble generation 
should be as high as possible. 

(v) To allow high frequencies of bubble generation 
without bubble coalescence and to decrease the 
residence time of bubbles on the wire surface, the 

volume of generated bubbles should be as small as 
possible. 

(vi) The only possible advantage of larger gas 
bubbles is that their velocity is greater, thus increasing 
the contribution of the additional forced convection 
to the overall bubble induced heat transfer. Neverthe- 
less, the corresponding small increase in heat-transfer 
rates is far outweighed by the adverse effects associated 

with large gas bubbles, namely, large bubble residence 
time on the wire surface and the limit on the maximum 

frequency of generation of discrete gas bubbles. 
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APPENDIX 1 

Simplification of Equations (3)-(9) 

Since the wire is approximated by a finite rod with 
uniform radial temperature distribution, equations (4) and (9) 
are not applicable. Energy balance on an element of the 
wire shows that for 

(A.1) 

where F, is the heat flux which is being dissipated from 
the outer surface of the wire by conduction into the surround- 
ing liquid and hence 

(A.2) 
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Equation (A.2) is s~lbstittlted into equation (A.1) 

t 2 0. I’ = u, Jf/ < L 

and equation (8) is then substituted into equation (A.3) to 
obtain for 

Equation (A.4)isidentical to equation (22). Hence the wire 
and the liquid temperatures are uncoupled and the liquid 
temperature, TLl, can be obtained from equations (I 8)-(22). 

The wire temperature, r,,. is calculated from equation 
18) as 

TW, = (TLI)r=a. (A.5) 

APPENDIX 2 

Method ofSolution of.!.$rutiorrs (18)-C?) 
First the Laplace Transformation of equations (18))(22) 

with respect to time is 

r > u. (cl < L 

subject to 

Equations (A.12) and (A.131 are substituted into equations 
(A.C(A.9). which must be identically satisfied for all values 
of c. 

This is possible only if for 

r>u 

daR. 1 dR, 
~ + ; dr - (q* +s’:‘L’)R, = 0 (A.15) 

subject to 

Equation (A.15) is a modified Bessel equation of the 
zeroth order. Using the implied condition that the tempera- 
ture at infinity is finite. the solution of equations (A.15) to 
(A.16) is then obtained in the following form: 

x (- ~YKo(!m 
2k, tiw 

(A.17) 

I__ P& (Pa) ak 
W 

where 

BZ = q= + sl/L2 (A.18) 

and &#a) and &@a) are modified Bessel functions of the 
second kind. 

Substituting (A.17) into (A.12) and using the Inversion 
Theorem for the Laplace Transformation an expression for 
T,, is then obtained: 

where b, is the Laplace Transformation of T,, defined by 

I 

K. 
Q(P) = e-T,,, dt (A.lO) 

0 

and 

q= = pllc,. (A.ll) 

Next Q, and Q/pkw are expanded using a cosine Fourier 
series 

(A.12) @= F R,(r)cos; 
n=O 

(A.13) 

where R,(r) is a function of r only and 

2n+l 
s=--It. 

2 . 
(A.14) 

Reversing the order of integration and summation, using 
the theorem for the Laplace Transformation of an integral 
and writing 

p’ = p+h.,; (A.20) 

4’2 = 02 = p’/k.,_ (A.21) 

equation (A.19) is simplified to 

j: exp[ -ti,(iyi.]W(l)di 

where (A.22) 

< ,‘n‘itar 

%(q’r) dp’. 

q’&(q’a) 

(A.23) 
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Because the integrand of (A.23) has a branch point at the 
origin, a contour shown in Fig. A.1 is used for evaluating of 
(A.23). The integrand is then a single valued function inside 
the closed contour. It is known that if tcW > kL (as in the 
case of most liquids) there are no poles of the integrand 
inside this region and on its boundaries [ 111. It is simple 
to show that integral (A.23) round the small circle tends to 
zero as r, + 0 and that this integral along the contours A to 
B and E to F (Fig. A.l) also tends to zero as R, + XI. 
Thus when re -+O and R, 4 co, integral (A.23) can be 
substituted by the sum of real infinite integrals over BC and 
DE. 

FIG. Al. Contour used for the Inversion Theorem. 

To obtain the real infinite equivalent of (A.23), 
X,(X/LX)* eeiK and ~,(x/a)~ ein are substituted for p’ [equation 
(A.20)] oncontours DE and BC respectively (Fig. A.l). This is 
then substituted into equation (A.22). Changing the order of 
integration and finally integrating with respect to time leads 
to an expression for the temperature field in the liquid 
surrounding the wire in the form given by equations 
(23)-(26). 


